

Silvia Man<mark>giacavall</mark>i IRCCS Policlinico San Matteo Pavia

Strategie terapeutiche nel paziente difficile da trattare

malattia extramidollare

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

Silvia Mangiacavalli MD COI Disclosure

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AMGEN					х	x	
BMS					x	x	
GSK					x	x	
JANSSEN					x	x	
SANOFI					x	x	
TAKEDA					x	x	

Extramedullary myeloma definition and incidence

- Paraskeletal (Local growth):
 - Soft-tissue masses arising from focal bone involvement
- Extramedullary plasmacytomas (hematogenous spread):
 - Subcutaneous tumors
 - Multiple nodules (skin, liver, breast, kidney)
 - Lymph nodes
 - Central nervous system

Table I. Plasmacytomas in multiple myeloma: incidence at diagnosis and at relapse.

	Paraskeletal (PS), %*	Extramedullary (EMD), $\%^{\dagger}$
At diagnosis	7–34·4	1·75–4·5
At relapse [‡]	6–34·2	3·4–10

*PS: soft-tissue masses arising from vertebrae, ribs, sternum, skull. [†]EMD: skin (single or multiple subcutaneous tumours), liver, pleura, breast, lymph nodes and central nervous system (CNS). [‡]At relapse >liver, pleura, CNS.

Game of bones, how MM manipulates microenvironment

(4;14) FGFR3/MMSET	Secondary	
(6;14) CCND3	Gain of 1q (CKSB1)	Terminal
(11;14) CCND1 (14:16) CMAE	Deletion of 1p (CDKNC2, FAF1, FAM46C)	MYC translocations
(14:20) MAFB	Monosomy of 13	Jumping translocations
Hyperdiploidy	Deletion of 17p (7P53)	Amp (10)
Trisomies of chromosomes 3,5,7,9,11,15,19 and 21	Deletion of NF-kB regulators: 11q22 (<i>BIRC 2/3</i>), 14q32 – (<i>TRAF3</i>), 16q (<i>CYLD</i>)	Mutational events (NRAS, KRAS, BRAF, TP53, NIK, TRAF, CYLD, DIS1, FAM46C)
	na & Pl	lullary multiple myeloma lasma cell Leukemia
Bone marrow ecosy	stem	Iullary multiple myeloma asma cell Leukemia
Bone marrow ecosy	stem	Iullary multiple myeloma Jasma cell Leukemia

PBURE1 | The compare organization of anonon intellect, programs, and datert intellates of MAM. Mile addred by the date appeared of a majorar planma and provident incore grandragement assertions with the base management of the Base and the date share programs and on the and anoncourse with a more appeared performing. The dynamic of the THE and Telement Head the majorary and address in the date of the date in the approximation of a special performance of the THE and Telement Head the majorary and address in the date of the approximation of the special performance of the THE and Telement Head the The Synder of the THE Intel Telement and and the transmission of the special performance of the THE and Telement Head the The Synder or approximation of the intellated HeI. Interacting in the transmission of the THE and Telement and the THE Address and the transmission of the memory and the THE - interactings in the transmission of the THE Address and the transmission of the THE Address and the memory and the THE - interactings in the transmission of the THE Address and the transmission of the THE - the memory and the THE - interactings in the transmission of the THE - the transmission of the THE - the memory and the THE - interactings in the transmission of the THE - the memory and the THE - interacting in the transmission of the THE - the memory and the transmission of the transmission of the THE - the memory and the THE - interactings in the memory and the THE - interactings in the memory and the transmission of the memory and the transmission

> Moser-Katz et al. Front Oncol 2021 Forster et al. Front Oncol 2022

Bhutani et al. Leukemia 2020

Extramedullary myeloma definition and incidence

	Overall series N = 1304	Pts without Ps N = 1048	Pts with Ps N = 256	P-value
Gender (male), n (%)	674 (51.6%)	526 (50.15)	148 (57.8%)	0.03
Age (years), median (range)	64 (21-92)	65 (21-92)	61 (24-87)	
ISS, n (%)*				
+1	266 (30.8%)	174 (25.7%)	92 (49.7%)	< 0.0001
+ II	282 (32.7%)	232 (34.3%)	50 (27%)	0.06
• 11	313 (36.3%)	270 (39.9%)	43 (23.2%)	< 0.0001
Heavy chain type, n (%)				
• lgG	703 (53.9%)	579 (55.2%)	124 (48.4%)	
- la^	260 (27.6%)	205 (28.1%)	65 (25 204)	
• Ligh chain	180 (13.8%)	130 (12.4%)	50 (19.5%)	0.004
• lgD	21 (1.6%)	17 (1.6%)	4 (1.5%)	NS
• IgM	8 (0.6%)	6 (0.5%)	2 (0.7%)	NS
Oligosecretory	13 (0.9%)	5 (0.4%)	8 (3.1%)	0.0005
Biclonal	12 (0.9%)	10 (0.9%9)	2 (0.7%)	NS
Unknown	7 (0.5%9)	6 (0.5%)	1 (0.3%)	NS
Ligh chain type, n (%)				
• Карра	722 (55.3%)	582 (55.5%)	140 (54.6%)	NS
• Lambda	530 (40.6%)	427 (40.7%9)	103 (40.2%)	
Non-secretory	14 (1.07%)	6 (0.5%)	8 (3.1%)	0.001
Biclonal	9 (0.69%)	7 (0.6%)	2 (0.7%)	NS
. University	20 (2.2%)	26 (2.49)	2 (1.10)	
Serum M-protein (g/L)(mean ± SD)	33.2 ± 21.9	35.3 ± 21.6	24.5 ± 21.08	0.0001
Bone marrow plasma cells (%)(mean ± SD)	46 ± 28.9	50±27.8	31 ± 28.8	0.0001
Available in 861 patients.				

Table 1. Baseline characteristics of the patients.

Jiménez-Segura et al, Blood Cancer J 2022

Extramedullary myeloma definition and incidence

first relapse.	plasmacytomas o	vertime at diagr	nosis and at
Plasmacytomas	Overall	Period 1	Period 2
At diagnosis	N = 1304	N = 577	N = 727
No	1048 (80.3%)	488 (84.5%)	560 (77%)
Yes	256 (19.6%)	89 (15.4%)	167 (22.9%)
EMPs	26 (1.9%)	9 (1.5%)	17 (2.3%)
PPs	230 (17.6%)	80 (13.8%)	150 (20.6%)
	250 (17.070)	00 (15.0%)	150 (20.0%)
Relapsed patients (with data available)	N = 967	N = 415	N = 552
Relapsed patients (with data available) No	N = 967 775 (80.1%)	N = 415 330 (79.5%)	N = 552 445 (79.6%)
Relapsed patients (with data available) No Yes	N = 967 775 (80.1%) 192 (19.8%)	N = 415 330 (79.5%) 85 (20.4%)	N = 552 445 (79.6%) 107 (19.3%)
Relapsed patients (with data available) No Yes • EMPs	N = 967 775 (80.1%) 192 (19.8%) 50 (5.1%)	N = 415 330 (79.5%) 85 (20.4%) 19 (4.5%)	N = 552 445 (79.6%) 107 (19.3%) 31 (5.6%)

Table 3. Location of plasmacytomas at diagnosis and at first relapse.

Location*	At diagnosis	At first relapse
Paraskeletal	N = 230	N = 142
Chest	92 (40%)	65 (45.7%)
Paravertebral	90 (39.1%)	71 (50%)
Skull	30 (13%)	24 (16.9%)
Pelvis	26 (11.3%)	16 (11.2%)
Long bones	3 (1.3%)	9 (6.3%)
Extramedullary	N = 26	N = 50
Pleura, lung	6 (23%)	13 (26%)
 Skin, subcutaneous cell tissue, muscle 	5 (19.2%)	20 (40%)
Liver	4 (15.3%)	8 (16%)
Other locations (EMPs: kidney, peritoneum)	15 (57.6%)	13 (26%)
Central Nervous System	1 (3.8%)	4 (8%)

*34% and 56% of patients had more than one location at diagnosis and first relapse, respetively.

Extramedullary myeloma prognostic impact and outcome

OS for TE after 2000

Jiménez-Segura et al, Blood Cancer J 2022

Extramedullary myeloma definition and risk factor

Table 2 Sites of first extramedullary escape in 93 patients of the study cohort developing extramedullary relapse*

	N°	% (out of 93 patients)
EMR-B	49	52.7
EMR-S	69	74.2
Head and neck	10	10.7
Lymph nodes	5	5.4
Chest		
pleura	6	6.5
lung	5	5.4
Liver	2	2.2
Skin and soft tissue	15	17.2
Plasmacell leukemia	26	28
Unique EMR site	6	6.4
In association with other EMR sites		21.5

*Different localizations can occur simultaneously in each single patient *EMR-B* extramedullary relapse arising from adjacent bone, *EMR-S* extramedullary relapse located in extraosseous organs

		HR	95%CI	p value
Baseline clinical risk factor	ISS = 1	-	-	
	$ISS \ge 2$	1.4	0.6-2.9	0.443
	Bone marrow infiltration (%)	1.0	0.99-1.02	0.374
	sMC (g/dL)	1.1	0.9-1.2	0.328
	Lytic bone lesions	1.2	0.7-2.3	0.480
	Hemoglobin ≥10 g/dl	2	-	-
	Hemoglobin <10 g/dl	1.0	0.5-2.1	0.965
	Serum calcium ≤ 11.5 mg/dl			2
	Serum calcium >11.5 mg/dl	1.4	0.7-2.8	0.283
	Serum creatinine ≤2 mg/dl	-	-	-
	Serum creatinine >2 mg/dl	1.7	0.6-4.6	0.289
Treatment-related risk factors	0 risk factor	=	-	-
	1 risk factor ^a	4.5	2.2-9.0	< 0.001
	2 risk factors ^b	9.0	4.3-19.1	< 0.001

sMC serum monoclonal component

^a (N° of subsequent treatments > 2 and treatment duration < 6 months) or (N° of subsequent treatments ≤ 2 and treatment duration ≥ 6 months)

^b N° of subsequent treatments > 2 and treatment duration \geq 6 months

Extramedullary myeloma: clonal evolution

Parameter at diagnosis of MM	Entire cohort N - 299	De novo EMM N - 95	Secondary EMM n - 204	p-value
Median age (range) at MM diagnosis	59.7(18-89.3)	61	58.7	.09
Median age (range) at EMM	62.1(18-92.1)	61	62.4	.12
ISS (n - 231)				.22
Stage I	45%	46%	45%	
Stage II	27%	33%	23%	
Stage III	28%	21%	32%	
Revised ISS (n - 211)				.57
Stage I	29%	33%	28%	
Stage II	35%	33%	35%	
Stage III	36%	34%	37%	
Cytogenetics at diagnosis of MM (n = 236)				
High-risk cytogenetics ³ , %	54%	53%	54%	.89
17p deletion	16%	18%	16%	.7
1q duplication	30%	26%	31%	.44
t(4;14)	16%	15%	16%	.84
MAF translocation				
t(14;16)	8%	9%	7%	.78
t(14;20)	2%	6%	1%	.06
t(11;14)	13%	7%	15%	.13
Hyperdiploid without other HR	24%	21%	26%	.42
Deletion 13q	29%	31%	29%	.75
Deletion 1p	3%	4%	3%	.69
MYC disruption	7%	7%	7%	.78
Involved/Uninvolved FLC ratio, median (IQR)	79 (15-329)	48.8	106	.17
Involved FLC value, median (IQR)	34 (8-124)	26.8	39	.7
Heavy and light Chain				.42
lgG	51%	45%	53%	
IgA	24%	29%	22%	
lgD	1%	0%	2%	
Light Chain only	23.1%	26%	22%	
Non-secretory	0.4%	0%	0.4%	
Light chain type				.99
Карра	61%	61%	61%	
Lambda	39%	39%	39%	
LDH > ULN at MM diagnosis	31%	33%	30%	.7
Marrow plarma cell infiltrate at diagnosis, median (IOP)	40% (20-70)	30%	50%	0.005

TABLE 1 Baseline characteristics at diagnosis of multiple myeloma in patients with de novo and secondary extramedullary disease

122/204 patients with secondary EMM with FISH at EMM

- 49 (40%) had a new structural variant vs FISH at diagnosis
- 1q duplication in 23% (28/122) patients
- deletion 17p in 16% (20/122) patients
- MYC disruption in 8% (10/122)patients
- 1q duplication plus del 17p were 8% (10/122)

median OS from EMM with clonal evolution on FISH

• 4.8 vs 9.6 months

Abbreviations: EMM, extramedullary multiple myeloma; FLC, free light chain; HR, high risk; ISS, international staging system; IQR, interquartile range; LDH, lactate dehydrogenase.

High-risk cytogenetic features were defined using the mSMART 3.0 criteria [deletion 17p, TP53 mutation, t(4;14), t(14;16), t(14;20), 1q duplication]

Extramedullary myeloma prognostic impact and outcome

prognostic impact of EMM at relapse

median OS from secondary EMM

- 0.7 years (95% CI: 0.6-0.9 years)
- iFLC >100 worst outcome

Median OS with de novo EMM

- 3.6 years (95%CI: 2.4-5.6)
- No impact of HR FISH

EMM Therapy in the last decade (CAR-T and BiAb available)

for secondary EMM	e 3. Progression Free	Survival (PFS) with initi	al treatment
Groups	n	Median PFS (95%CI), months	P value
Proteasome Inhibitor (PI) plus [MiD based combination without CD38 antibody (group 1)	24	2.2 (1.9-5.2)	0.078
CD38 antibody- based combination (including in combination with PI or ImiD (group 2)	36	4.5 (2.5-7.6)	
Immune effector therapies (CAR-T or Bispecific T-cell redirecting	12	3.9 (1.9-NA)	
antiboolice (group o)			
VDT-PACE like chemotherapy and other <u>alkylator</u> - based combinations (group 4)	59	2.9 (2.4-3.5)	
Either PI or MiD- based combination without CD38 antibody (group 5)	34	3.1 (2.2-5.1)	
Miscellaneous	15	1.5 (0.0-14-1)	
(group 6) *4 patients received radiation the received selinexor-dexamethase transplantation, TAK-881.	rapy alone, 2 patients were treated one. <u>venetociax</u> dexamethasone,	with belantamab PT-112 (clinical tri high dose methylprednisone, all	al), 1,patient each ogenic stem cell

Zanwar et al, Am J Hematol 2023

EMM Therapy in the last decade (CAR-T and BiAb available)

Supplementary Table 4. In Myeloma	mmune effector therapies in <u>Ext</u>	ramedullary Multiple
Parameter	arameter CAR-T Bisp antik	
N	20 (%)	12 (%)
Median Prior Lines of therapy (range)	5 (4-8)	5 (4-8)
Туре	idecabtagene vicleucel: 11 ciltacabtagene autoleucel: 4 CC-98633: 3 CT053: 1	TNB383B: 7 REGN5459: 3 GPRC5DxCD3:1 FcRH5xCD3: 1
Response (PR or better)	15/20 (75%)	4/12 (33%)
CR with MRD positivity VGPR PR SD PD	8 (53%) 2 (13%) 2 (13%) 3 (20%) 1 (7%) 4 (27%)	1 (8%) 0 3 (25%) 2 (17%) 6 (50%)
Median PFS (95%CI)	4.9 months (3.1- NR)	2.9 months (2.2- NR)
Site of Progression	Progressed=15	Progressed=10
Systemic + Extramedullary Extramedullary alone Systemic Alone CAR-T: chimeric antigen receptor-t cell th	7 (46%) 4 (27%) 4 (27%) arapy: CR: complete response: MRD: minimal res	8 (80%) 1 (10%) 1 (10%) idual disease: PD: progressive
disease; PFS: progression free survival; F *two patients received both a CAR-T and	R: partial response; SD stable disease; VGPR: Bispecific antibody	very good partial response

Bhutani et al. Leukemia 2020

.

.

Taylor & Francis Taylor & Francis Group

Check for update

Check for updates

Journal of

Open Access

Ja Min Byun¹, Chang-Ki Min², Kihyun Kim³, Soo-Mee Bang⁴, Je-Jung Lee⁵, Jin Seok Kim⁶, Sung-Soo Yoon¹ and Youngil Koh^{1*}

ORR 77%

ORR 58%

PES 5 months

CR 14%

- **CR12%** ٠
- PFS 8,3 months • (bridging to TX)

ORR 67,7%

CR 35,5%;

PFS 5 months

EMN 19 phase II trial for ND-EMM and RR-EMM

Objectives

Circulating Tumor Cell characterization

Clinical and biological biomarke

Immune Profiling of BM and EMD

• CR rate

Second

• ORR

Safety (Adverse Events)
 Exploratory
 GEP in BM and EMD site(s)

characterizatio

Key Eligibility Criteria

Newly Diagnosed or 1th relapse MM patients with EMD (paraskeletal plasmaoytomas ONLY are not eligible ECOG P5 5.2. Note: for subjects with CNS involvement, an ECOG P5-2.2 is also acceptable Messurable Disease (Serum, Urine or SFLC MM) Non refractory to Bortezomib based regimmas No prior treatment with anti-CD38 or anti-CS1 MoAB Adequate Bone Marrow function (minimum laboratory regulements) No ASC within 32 weeks of CID1 No prior alloS7 (regardless of timing)

<u>D-VCd (n=40)</u> Until PD or unacceptable toxicity (max. 36 months)*
aratumumab (D) 16 mg/kg IV • OW in Occles 1-2, O2W in Occles 3-6, O4W in Occles 1
ortezomib (V) 1.5 mg/m² SC • QW in every cycle
yclophosphamide (C) 300 mg/m² IV or PO • QW in every cycle
examethasone (d) 20 mg PO or IV • Days 1, 2, 8, 9, 15, 16, 22, 23 of every cycle

*Patients who have not demonstrated at least a confirmed PR by the end of Cycle 3 will discontinue study treatment

Figure 1. Combinations of best hematologic and EMD metabolic responses, among patients with at least partial response in and outside the marrow (n=28)

CR, complete response; VGPR, very good partial response; MRD, minimal residual disease; PR, partial response

Figure 2. PFS by best hematologic and EMD response status

CMR, complete metabolic response; hemCR, hematologic complete response; NR, not reached; PFS, progression-free survival

Beksac et al, poster 1956, ASH 2023

median FU 19 months

- mOS =NR
- mPFS 20 months
- NDEMM= NR

Sponsor Apr

• RREMM=15 months

0A-31

Efficacy of bispecific antibodies in the treatment of extramedullary disease and high risk cytogenetics in relapsed multiple myeloma: a systematic review

Charan Vegivinti^{1,2}, Jaison Lawrence Alexander Santhi³, Lawrence Liu⁴, M Bakri Hammami^{1,2}, Rahul Thakur¹, Ananta Ghimire⁵, Nagarathna Poojary⁵, Murali Mohan Reddy Gopireddy⁵,

Anusha Manoj Kallamvalappil⁶, Sahas Reddy Jitta⁷, Nikita Chintapally⁸, Nishi Shah^{9,2}, Murali Janakiram⁴ ¹Jacobi Medical Center; ³Albert Einstein College of Medicine; ³Government Sivagangai Medical College; ⁴City of Hope National Comprehensive Cancer Center; ³coGuide Academy; ⁹Phoenix Hospital; ⁷Mercy Hospital St Iouis Missouri; ⁹MedStar Washington Hospital Center; ⁹Montefiore Medical Center and Albert Einstein College of Medicine

Methods

- Meta-analysis of clinical trial using BiAb
- 14 studies were included in this analysis (787 patients)
- 3 studies (n = 78) reported ORRs in cohorts of patients with EMM
- 5 studies (n = 111) reported ORRs in cohorts of patients with HR-CA
- 3 studies reported ORRs with combination therapies (176 patients)

Results in the entire cohort

- the ORR was 0.59 (95% Cl, 0.54-0.65)
- After stratified by bispecific antibody:
 - 0.70 with talquetamab
 - 0.63 with teclistamab
 - 0.62 with elranatamab

Results in the cohort with EMM

- The ORR was 0.38
- After stratified by bispecific antibody:
 - 0,45 with talquetamab
 - 0.36 with teclistamab
 - 0.38 with elranatamab

ORR with BiAb COMBO: 0.85 (95% CI, 0.80-0.90) **ORR with BiAb COMBO in EMM (only** The RedirecTT-1 trial with Tec+Tal): 0.71 (95% CI, 0.51-0.87).

Conclusions:

- only 4 trials reported EMD responses
- clinical trials should report EMD responses distinctly as it directly informs clinical decisions
- EMD responses are significantly lower than the full cohort ORR

652.MULTIPLE MYELOMA: CLINICAL AND EPIDEMIOLOGICAL | NOVEMBER 28, 2023

Efficacy of Bispecific Antibodies Vs CAR-T in the Treatment of Extramedullary Disease and High-Risk Cytogenetics in Relapsed Multiple Myeloma: A Systematic Review and Meta-Analysis

Charan Thej Reddy Vegivinti, Jaison Lawrence Alexander Santhi, Lawrence Liu, Praneeth Reddy Keesari, Rahul Thakur, M Bakri Hammami, Venkatesh Kapu, Sindhu Pericherla, Murali Mohan reddy Gopireddy, Nagarathna Poojary, Ananta Ghimire, Nishi Shah, Murali Janakiram

() Check for updates

Blood (2023) 142 (Supplement 1): 1994.

https://doi.org/10.1182/blood-2023-190019

CAR-T

- ORR for EMD in 14 RCT (n=172)
- ORR was 0.86 vs 0.77 for EMD

BiAb

- ORR for EMD available in 4 RCT (106 pts)
- ORR was 0.67 vs 0.48 for EMD

Study	Event	s Tota	Weight (common)	(random)	IV, Fixed + Random, 95% CI	IV, Fixe	d + Rar	ndom,	95%	CI
Cohen AD et al [2019]		4 7	2.5%	4.3%	0.57 [0.18; 0.90]	-			anna.	
Raje N et al [2019]		8 9	8.0%	8.3%	0.89 [0.52; 1.00]				1	-
Xu J et al [2019]		5 5	6.9%	7.8%	1.00 [0.48; 1.00]			_	8	
Deng H et al [2021]		5 7	3.0%	4.9%	0.71 [0.29; 0.96]				• <u>1</u>	-
Munshi NC et al [2021]	3	5 50	20.9%	11.2%	0.70 [0.55; 0.82]			-	÷.	
Wang D et al [2021]		1 5	2.7%	4.6%	0.20 [0.01; 0.72]			_		
Mei H al [2021]		8 9	8.0%	8.3%	0.89 [0.52; 1.00]			_	2	-
Du J et al [2021]		7 11	4.2%	6.0%	0.64 [0.31; 0.89]		-		-	
Zhao WH et al [2022]	1	7 22	11.0%	9.4%	0.77 [0.55; 0.92]			-		-
Wang Y et al [2022]	1	2 15	8.2%	8.4%	0.80 [0.52; 0.96]					-
Tang Y et al [2022]		5 8	3.0%	4.9%	0.62 [0.24; 0.91]				2	-
Mailankody S et al [2022]		5 8	3.0%	4.9%	0.62 [0.24; 0.91]	-			-	÷
Minakata D et al [2023]		5 5	6.9%	7.8%	1.00 [0.48; 1.00]		2	_	5	
Xia J et al [2023]	1	0 11	11.7%	9.6%	0.91 [0.59; 1.00]			-		-
Total (common effect, 95% CI)	172	100.0%	-	0.79 [0.73; 0.85]				+	
Total (common effect, 95% CI Total (random effect, 95% CI))	172	2 100.0%	100.0%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87]	_			+	
Total (common effect, 95% CI) Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ²) ¹ = 27.99	172 df = 13	2 100.0% (P < 0.01); I ²	100.0% = 54%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87]	[1	1	+	_
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150; Chi ²) ¹ = 27.99	172 df = 13	2 100.0% (P < 0.01); I ²	100.0% = 54%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87]	0.2	0.4	0.6	0.8	1
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150; Chi ²) ¹ = 27.99	172 df = 13	2 100.0% (P < 0.01); I ²	100.0% = 54%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed	1 ullary
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibe) '= 27.99 odie	172 df = 13	2 100.0% (P < 0.01); I ²	100.0% = 54%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed	1 ullary
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibo) = 27.99 odie	172 df = 13 25	2 100.0% (P < 0.01); i ² Weight	100.0% = 54% Weight	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed	1 ullary
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E) ¹ = 27.99 Odie vents 1	172 df = 13 2 S Fotal (i	2 100.0% (P < 0.01); i ² Weight common) (100.0% = 54% Weight random) IV,	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% Cl	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed 95% (1 ullary CI
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022]) = 27.99 Odie vents 1	172 df = 13 2 S fotal (0 28	2 100.0% (P < 0.01); i ² Weight common) (26.0%	100.0% = 54% Weight random) IV, 26.4%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% CI 0.36 [0.19; 0.56]	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed 95% (1 ullary CI
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022] an et al [2022]) cdie vents 1 10 5	172 df = 13 2 S Fotal (r 28 11	2 100.0% (P < 0.01); i ² Weight common) (26.0% 9.5%	100.0% = 54% Weight random) IV, 26.4% 17.9%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% Cl 0.36 [0.19; 0.56] 0.45 [0.17; 0.77]	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed 95% (1 ullary CI
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150; Chi ² ispecific antibu udy E preau et al [2022] ari et al [2022] bis et al [2022]) cdie vents 1 10 5	172 df = 13 2 S fotal (0 28 11 39	2 100.0% (P < 0.01); i ² Weight common) (26.0% 9.5% 35.2%	100.0% = 54% Weight random) IV, 26.4% 17.9% 28.4%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% CI 0.36 [0.19; 0.56] 0.45 [0.17; 0.77] 0.38 [0.36 55]	0.2 n of respon	0.4 nse rate	0.6 to ext	0.8 ramed 95% (1 ullary CI
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022] ari et al [2022] hils et al [2022]	odie vents 1 10 5 15	172 df = 13 2 S fotal (0 28 11 39	2 100.0% (P < 0.01); i ² Weight common) (26.0% 9.5% 35.2%	100.0% = 54% Weight random) IV, 26.4% 17.9% 28.4% 28.4%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% CI 0.36 [0.19; 0.56] 0.45 [0.17; 0.77] 0.38 [0.23; 0.55]	0.2 n of respor	0.4 nse rate	0.6 to ext	0.8 ramed 95% (1 ullary CI
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022] arii et al [2022] hhis et al [2022] when YC et al [2023]) cdie vents 1 10 5 15 20	172 df = 13 2 S fotal (d 28 11 39 28	2 100.0% (P < 0.01), P Weight common) (26.0% 9.5% 35.2% 29.3%	100.0% = 54% Weight random) IV, 26.4% 17.9% 28.4% 27.3%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% CI 0.36 [0.19; 0.56] 0.45 [0.17; 0.77] 0.38 [0.23; 0.55] 0.71 [0.51; 0.87]	0.2 n of respor	0.4 Ise rate	0.6 to ext	0.8 ramed 95% (1 ullary Cl
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022] ari et al [2022] hhis et al [2022] when YC et al [2023] ttal (common effect, 95% CI)	odie vents 1 10 5 15 20	172 df = 13 2 S fotal (r 28 11 39 28 106	2 100.0% (P < 0.01), P Weight common) (26.0% 9.5% 35.2% 29.3%	100.0% = 54% Weight random) IV, 26.4% 17.9% 28.4% 27.3%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% CI 0.36 [0.19, 0.56] 0.45 [0.17, 0.77] 0.38 [0.23; 0.55] 0.71 [0.51; 0.87] 0.48 [0.39; 0.57]	0.2 n of respor	0.4 nse rate	0.6 to ext dom,	0.8 ramed 95% (1 ullary Cl
Total (common effect, 95% CI Total (random effect, 95% CI) Heterogeneity: Tau ² = 0.0150, Chi ² ispecific antibu udy E vreau et al [2022] hils et al [2022] hils et al [2022] hien YC et al [2023] tal (common effect, 95% CI) tal (random effect, 95% CI)	0 codi€ vents 1 10 5 15 20	172 df = 13 2 S fotal (r 28 11 39 28 106	2 100.0% (P < 0.01), P Weight common) (26.0% 9.5% 35.2% 29.3% 100.0%	100.0% = 54% Weight random) IV, 26.4% 17.9% 28.4% 27.3%	0.79 [0.73; 0.85] 0.77 [0.68; 0.87] Proportion Fixed + Random, 95% Cl 0.36 [0.19; 0.56] 0.45 [0.17; 0.77] 0.38 [0.23; 0.55] 0.71 [0.51; 0.87] 0.48 [0.39; 0.57] 0.48 [0.31: 0.65]	0.2 n of respon	0.4 Ise rate	0.6 to ext dom,	0.8 ramed 95% (1 ullary

EMM Therapy in the last decade (RedirecTT-1 Tec+Tal)

- First results from the phase 1b trial of teclistamab + talquetamab showed a safety profile consistent with each of the monotherapies
- 96% ORR across at RP2R
- 86% ORR in extramedullary disease subgroup (RP2R)

P-069

Liquid biopsy monitoring is more sensitive than alternative techniques in extramedullary multiple myeloma

Nicholas Bingham¹, Daniel Wong¹, Antonia Reale¹, Tiffany Khong¹, Sridurga Mithraprabhu¹,

Andrew Spencer¹

Alfred Health-Monash University, Melbourne, VIC, Australia

Background:

- EMM detection and monitoring include PET/CT scans alternatives to BM biopsies
- consensus response criteria (CRC) are limited
 - EMD is frequently nonsecretory or with minimal BM involvement
- EMD is associated with DM in the MAPK pathway (KRAS, NRAS and BRAF)
- DM are detectable in cell free DNA (cfDNA) in EMD patients

Aim:

• Clarify the possible role of cfDNA characterisation and monitoring in EMD patients

Methods:

- DM were identified by WG and WE sequencing
- Dd-PCR was used to detect DM in cfDNA at additional time-points (prior to EMD, after treatment and at relapse)
- 100% of 13 pts had the EMD DM + at the time of EMD with VAF ranging from 0.05% to 37.63%. 8 pts had at least 2 cfDNA time-points
- cfDNA levels after therapy were correlated to PET/CT, Consensus RC and EuroFlow minimal residual disease (MRD)

Results and Conclusions:

- cfDNA is complementary to PET/CT (2 had cfDNA + with PET/CT and 1 cfDNA but PET/CT +)
- cfDNA was more sensitive compared to CRC (cfDNA+ in 3 patients in a CR)
- cfDNA assessment outperformed MRD (40% of MRD- with cfDNA +)
- Patients achieving cfDNA had the longest PFS (median 23.5 vs 6 months in cfDNA+ 6 months)
- cfDNA+ anticipated relapse
- DM were detectable in cfDNA prior to the initial development of EMD

Extramedullary myeloma identification and monitoring

Lesion	Definition
FL	Foci of uptake above surrounding background noise on 2 successive sections with or without osteolysis on computed image, excluding benign etiologies
Extramedullary disease	Tissue invasion without contiguous bone involvement
Paramedullary disease	Soft-tissue invasion with contiguous bone involvement
Diffuse medullary involvement	Homogeneous or heterogeneous diffuse uptake of pelvic-spinal-peripheral skeleton higher than liver background
FL SUV _{max}	SUV _{max} of bone FLs
¹⁸ F-FDG PET/CT abnormality	Presence of FLs, extramedullary disease lesions, paramedullary disease lesions, or diffuse medullary involvement

 TABLE 1

 Elements to Be Specified in ¹⁸F-FDG PET/CT MM Reporting

TABLE 2 Interpretation Criteria for ¹⁸F-FDG PET/CT in MM Response to Therapy Assessment

Status	Definition			
Complete metabolic response	Uptake ≤ liver activity in bone marrow sites and FLs previously involved (including extramedullary and paramedullary disease [Deauville score, 1–3])			
Partial metabolic response	Decrease in number or activity of bone marrow sites/FLs present at baseline but persistence of lesions with uptake > liver activity (Deauville score, 4 or 5)			
Stable metabolic disease	No significant change in bone marrow sites/FLs compared with baseline			
Progressive metabolic disease	New FLs compared with baseline consistent with myeloma			

Take home messages

- Extramedullary plasmacytomas confers a dismal prognosis, both at diagnosis (denovo EMM) and even more at relapse (secondary EMM) not overcome by the novel agents
- PET-CT is the best available methods for staging and response definition
- Liquid Biopsy may have a role in the future
- For de novo EMM consider quadruplet therapy plus tandem auto or tandem auto/allo in transplant elegible patients
- For secondary EMM still no standard of care available

Hematology Division Director Prof Luca Arcaini Myeloma Group

Silvia Mangiacavalli Claudio Salvatore Cartia Michele Palumbo Valeria Masoni Claudia Battista Marta Oldini

Hematology Division Trial Office Alessandra Ferrari Khodri Iman

Martina La Fauci Sofia Marino